Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit.
نویسندگان
چکیده
The utilization of microscope objectives (MOs) in digital holographic microscopy (DHM) has associated effects that are not present in conventional optical microscopy. The remaining phase curvature, which can ruin the quantitative phase imaging, is the most evident and analyzed. As phase imaging is considered, this interest has made possible the development of different methods of overcoming its undesired consequences. Additionally to the effects in phase imaging, there exist a set of less obvious conditions that have to be accounted for as MOs are utilized in DHM to achieve diffraction-limit operation. These conditions have to be considered even in the case in which only amplitude or intensity imaging is of interest. In this paper, a thorough analysis of the physical parameters that control the appropriate utilization of MOs in DHM is presented. A regular DHM system is theoretically modeled on the basis of the imaging theory. The Fourier spectrum of the recorded hologram is analyzed to evaluate the performance of the DHM. A set of the criteria that consider the microscope features and the recording parameters to achieve DHM operation at the diffraction limit is derived. Numerical modeling and experimental results are shown to validate our findings.
منابع مشابه
Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms.
We present a digital method for holographic microscopy involving a CCD camera as a recording device. Off-axis holograms recorded with a magnified image of microscopic objects are numerically reconstructed in amplitude and phase by calculation of scalar diffraction in the Fresnel approximation. For phase-contrast imaging the reconstruction method involves the computation of a digital replica of ...
متن کاملScanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms.
We present what we believe to be a new application of scanning holographic microscopy to superresolution. Spatial resolution exceeding the Rayleigh limit of the objective is obtained by digital coherent addition of the reconstructions of several off-axis Fresnel holograms. Superresolution by holographic superposition and synthetic aperture has a long history, which is briefly reviewed. The meth...
متن کاملCompressed Sensing with off-axis frequency-shifting holography
This work reveals an experimental microscopy acquisition scheme successfully combining compressed sensing (CS) and digital holography in off-axis and frequency-shifting conditions. CS is a recent data acquisition theory involving signal reconstruction from randomly undersampled measurements, exploiting the fact that most images present some compact structure and redundancy. We propose a genuine...
متن کاملSuperresolution digital holographic microscopy for three-dimensional samples.
An approach that allows superresolution imaging of three-dimensional (3-D) samples by numerical refocusing is presented in the field of digital holographic microscopy. Based on the object's spectrum shift produced by tilted illumination, we present a time multiplexing superresolved approach to overcome the Abbe's diffraction limit. The proposed approach uses a microscope in a Mach-Zehnder inter...
متن کاملA novel non-diffractive reconstruction method for digital holographic microscopy
We present a new method for reconstructing digitally recorded off-axis Fresnel holograms. Currently-used reconstruction methods are based on the simulation and propagation of a reference wave that is diffracted by the hologram. This procedure introduces a twin-image and a zero-order term which are inherent to the diffraction phenomenon. These terms perturb the reconstruction and limit the field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 53 10 شماره
صفحات -
تاریخ انتشار 2014